
www.manaraa.com

University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

Fall 2019 

Motivational and Physiological Dysregulation Due to Development Motivational and Physiological Dysregulation Due to Development 

and Onset of Obesity via Melanocortin 4 Receptor +/- and Onset of Obesity via Melanocortin 4 Receptor +/- 

Haploinsufficiency Haploinsufficiency 

Alex Steiner 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Experimental Analysis of Behavior Commons 

Recommended Citation Recommended Citation 
Steiner, A.(2019). Motivational and Physiological Dysregulation Due to Development and Onset of Obesity 
via Melanocortin 4 Receptor +/- Haploinsufficiency. (Master's thesis). Retrieved from 
https://scholarcommons.sc.edu/etd/5560 

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and 
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact 
dillarda@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1236?utm_source=scholarcommons.sc.edu%2Fetd%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/5560?utm_source=scholarcommons.sc.edu%2Fetd%2F5560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu


www.manaraa.com

 

Motivational and Physiological Dysregulation Due to Development and Onset of Obesity 

via Melanocortin 4 Receptor +/- Haploinsufficiency 

 

By 

 

Alex Steiner 
 

Bachelor of Arts 
University of South Carolina, 2016 

 

 

Submitted in Partial Fulfillment of the Requirements 

For the Degree of Master of Arts in 

Experimental Psychology 

College of Arts and Sciences 

University of South Carolina 

2019 

Accepted by: 

Charles Mactutus, Director of Thesis 

Rosemarie Booze, Reader 

Steven Harrod, Reader 

Cheryl L. Addy, Vice Provost and Dean of the Graduate School



www.manaraa.com

ii 

Abstract 

 Obesity is one of the leading most health risks around the world, being 

especially problematic in the United States. A combination of high-fat diets and genetic 

abnormalities are to blame for the ever-growing number of obese individuals. 

Melanocortin 4 receptors are vital for regulating energy expenditure and feeding 

behaviors; mutations of the receptors have been found to be the leading monogenetic 

cause of obesity. Using MC4R +/- haploinsufficient rats being fed a range of dietary fat, 

we investigated the physiological and motivational differences using a locomotor task, 

an operant task with fixed and progressive ratios, as well as a distraction operant task. 

Percentage of lipid deposits in the liver of each rat was also analyzed using the Area 

Fraction Fractionator probe for stereological measurements. MC4R +/- 

haploinsufficiency resulted in a phenotypic resemblance for adult-onset obesity that is 

worsened by poor dietary fat consumption. Results from the operant tasks indicate that 

motivational deficits due to MC4R +/- haploinsufficiency can be seen prior to the onset 

of obesity. Post-obesity motivational deficits may be dependent on dietary fat 

consumption. Given the full results, the MC4R circuit ties closely with the motivational 

dopamine circuit providing a possible target in the prevention of adult-onset obesity 

before developme
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Chapter 1. Introduction 

Obesity in the United States is a major health risk for both children and adults. 

The epidemic has caused serious consequences that affect the individual, communities, 

as well as the economy. In 2014, reports estimated that the national total cost of 

overweight and obese individuals was $149.4 billion yearly, with an average cost of the 

individual being $1901 yearly (Kim & Basu, 2016). Over the past few decades, trends in 

obesity have continued to increase. Specifically, childhood obesity has seen a large 

increase in the past 30 years. An increase from 7% to 18% prevalence of obesity in 

children ages 2 to 19 has been seen since 1988. Extreme obesity has also seen an 

increase reaching 5.8% in the same age children (Ogden et al., 2016). It is clear there is a 

drastic increase in the obese population seen over the past 30 years.  

Obesity is a multifactorial issue. The lack of exercise and a high-fat diet lifestyle 

that many Americans have adopted is the most common issue. Besides societal 

negligence, many other genetic and central nervous system dysregulations contribute to 

obesity. The leading monogenetic cause of obesity in the United States is the deletion or 

mutation of the melanocortin-4 receptor (MC4R). The mutation has been estimated to 

affect approximately 6% of the clinically obese population (Farooqi et al., 2003). The 

melanocortin system as a whole controls regulatory behaviors that include body weight, 

energy intake, energy expenditure, as well as sexual function (Ho and Mackenzie 1999).  
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The arcuate nucleus of the hypothalamus is a relay area that regulates and 

reflects metabolic status. The arcuate nucleus is part of the melanocortin system that is 

regulated by leptin (Adan et al., 2006). The arcuate nucleus is compromised of two main 

pathways; the anorexigenic and the orexigenic. The two pathways have been studied for 

decades beginning with the early lesion studies in the arcuate nucleus (Hetherington 

and Ranson., 1940, Anand and Brobeck., 1951). 

Melanocortins are products of the proopiomelanocortin (POMC) prohormone 

(Gantz & Fong, 2003). Neurons that contain melanocortins can be found in many areas 

of the brain but are primarily found inside the arcuate nucleus. POMC neurons, for 

example, have feeding behavior pathways that project to the dorsal vagal complex of 

the brainstem and the intermediolateral cell column of the spinal cord (Mercer et al., 

2013). The activity of the melanocortin system is regulated by endogenous melanocortin 

receptor agonists, α-melanocyte-stimulating hormone (α-MSH), β-MSH, γ-MSH (which 

are all derivative of POMC), as well as agouti-related protein (AgRP). POMC neurons 

release α-MSH, which serves as an agonist to melanocortin receptors, thus causing a 

suppression in appetite. AgRP neurons activate the opposite pathway, which inhibits 

appetite suppression activated by a negative energy balance that is regulated by leptin. 

AgRP is as an inverse agonist for two of the major receptors of the melanocortin system, 

melanocortin 3 and melanocortin 4 (Adan et al., 2006). While the melanocortin system 

has five different receptors, MC4R is the most relevant to obesity because of its 

relationship with the POMC and AgRP pathways. The MC4Rs are G protein-coupled 

receptors that are located downstream of POMC neurons. Because of their location and 
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function, the MC4Rs are the most influential of the MC receptors in regards to feeding 

behavior and energy expenditure, as well as general energy homeostasis (Smith et al., 

2007: Krashes et al., 2016).  

The most unique aspect of MC4Rs is that deletion or mutation of the receptors 

reacts in a functional gene dose-response manner. Briefly, the heterozygous mutation 

shows a lesser loss of function compared to that of the homozygous mutation (Tao & 

Ya-Xiong, 2010). The current knowledge of the MC4R functioning has allowed the 

creation of both mice and rats with MC4R dysregulations that have been used to study 

the role of MC4Rs in as obesity. 

 Control wild type rats have Mc4R mRNA expression that begins around postnatal 

day 14. By postnatal day 18, it is expressed throughout the brain, primarily in the 

hypothalamus, amygdala, thalamus, and the hippocampus (Tao & Ya-Xiong, 2010). The 

MC4R haploinsufficient rats are created using Wistar strain rats that have a mutation 

that produces a stop codon located further upstream than its usual position, which 

results in the truncation of 18-amino acids in helix 8 of the receptor. The mutation 

results in the phenotypic change in progressive obesity, hyperphagia, decreased 

grooming behavior, as well as reduced ambulatory activity in the rat (Mul et al., 2012). 

The resulting progressive obesity mimics human obesity in normal populations; thus 

suggesting that the MC4R haploinsufficient is a valid model to its human counterpart. 

Other phenotypical changes in the MC4R haploinsufficient rat are lesser known. 

Changes in taste preference as well as motivation regarding food acquisition and 

consumption require further research. 
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 The consequences of obesity, specifically that of a high-fat diet, are well known. 

One such consequence is a range of non-alcoholic fatty liver diseases. Steatosis, which is 

a milder form of steatohepatitis, is the accumulation of lipid deposits in the liver (Lieber 

et al.,2004). The disease was previously thought to only occur with heavy alcohol use 

but has since been directly linked to high fat dietary food (Ludwig et al., 1980). 

Interestingly, melanocortin activity in the amygdala has been shown to regulate dietary 

fat appetite control (Boghossian et al., 2009). Steatosis and the effects of dietary fat 

have been studied using rats previously (Ahmed et al., 2009); however, no study has 

shown the possible effects of MC4R mutation. 

The present study investigates the possible physiological and motivational 

changes due to MC4R haploinsufficiency, dietary fat, or the relationship between the 

two. Given the known dose-dependent effects of mutation of MC4Rs, the 

haploinsufficient +/- rat was chosen to model the development of adult-onset obesity. 

Selection of diets (0% -12% saturated fat) was specifically chosen to be clinically relevant 

to a range of modern diets.  The addition of the inflammatory group allows for a unique 

control compared to the other dietary groups. Consumption of high-fat diets should also 

enhance the progression of obesity. Our guiding hypothesis is that the trajectory to 

obesity is preceded by alterations in motivational systems, including neuroadaptations 

in the central nervous system; these alterations in motivational systems will have 

persistent functional consequences for vulnerability to excessive caloric intake in an 

obesogenic environment, and the extent of central nervous system neuroadaptations 

will be exacerbated in an obesogenic environment.
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Chapter 2. Methods 

2.1 Subjects 

Male Wistar Rats (MC4R +/-, n=33; control, n=33) taken from 10 different litters, 

were weaned at postnatal day 21. After weaning, animals were housed in pairs with one 

haploinsufficient rat and one control rat per cage and randomly assigned to a diet. 

Physical characteristics such as weight, crown-rump length, and waist circumference 

were measured on postnatal days 21-23, 27-29, 34-36, 41-43, 48-50, 62-64, 76-78, 90-

92, 120-122, 152-154, and day of sacrifice. BMI was also calculated using weight 

(g)/(length(cm)2. Animals were kept in an AAALAC accredited (D16-00028) facility at 21 

±2 degrees Celsius, 50% ± 10% relative humidity on a 12-hour light/dark cycle with lights 

on at 07:00h. All behavioral testing was conducted during the light cycle.   

2.2 Dietary Group 

 Dietary groups were randomly assigned to each cage. The diets include a control 

diet (n=9 per group) (1.7% Saturated Fatty Acids SFA, with 12.2% total kcal from fatty 

acids), an inflammatory diet (n=8 per group) (1.7% SFA, with 12.2% total kcal from fatty 

acids, 20:1 ratio of omega-6:omega-3 unsaturated fatty acids), a low-saturated-fat diet 

(n=8 per group) (6% SFA, with 40% total kcal from fatty acids), and a high-saturated fat 

diet (n=8 per group) (12% SFA, with 40% total kcal from fatty acids).  While in home 

cages, animals have ab libitum access to food and water. Diets were chosen to replicate 

a range of possible diets related to human counterparts
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2.3 Timeline and Experimental Design 

 Animals began activity tasks post weening starting at day 30. All animals 

repeated locomotor activity and sucrose preference tasks throughout a significant 

portion of their lifespan. Prior to the development of obesity, animals were assessed 

using a fixed ratio and progressive ratio operant tasks to assess motivation. Following 

the onset of obesity, motivation was assessed similarly, using variable progressive ratio 

and distraction operant tasks. Post sacrifice, steatosis analysis occurred. The overall 

study design can be seen in table 1. 

Table 2.1: Overall study design   

Activity Tasks. Postnatal days 30, 60, 90, 120, 150, and 180 

Sucrose Preference Task  Locomotor Activity 

Pre-Obesity Motivational Tasks. Postnatal days 61-120 

Fixed Ratio 1, 3, 5 Progressive Ratio  

Post-Obesity Motivational Tasks. Postnatal day 120-Sacrifice 

Variable Progressive Ratio No Distraction Task Distraction Task 

Post Sacrifice 

Steatosis Analysis 

 

2.4 Locomotor Activity 

The testing apparatus for the locomotor activity task was a 40 cm by 40 cm 

square chamber with a circular Plexiglas insert to promote movement. The chamber 

tracks ambulation and rearing using infrared photocells on an X and Y dimension 

(Hamilton-Kinder Inc., Ponway, CA). Photocells were tuned by the manufacturer to 

control for the Plexiglas insert. The test was administered at postnatal days of age 21, 

30, 60, 90, 120, 150, and 180 under low light conditions to simulate the nocturnal 

experience when rats are active. The hits across the photocell grid (32 X 32, spaced 2.5 
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cm apart) were recorded using Digipro System Software (v. 140, AccuScan Instruments) 

in real time. Motor Monitor software (Hamilton-Kinder Inc, Ponway, CA) was used to 

record and monitor movements inside the chamber. Basic movements were defined as 

a clearing of a beam when a new beam is broken, while rearing was defined as a 

breaking of an overhead beam.  

2.5 Sucrose Preference Test  

Sucrose preference testing was administered on days 30, 60, 90, 120, 150, and 

180. The animals were habituated to the testing cage on postnatal day 21. For a 20-

minute testing session, five sucrose solutions (0, 1, 3, 10, and 30% by volume) were 

available to the animal. Bottle weight differences were used for the preference analysis. 

Potential position preference was controlled for by using block randomization and Latin-

Square procedure on the bottle sequence. 

 2.6 Operant Testing Apparatus 

The operant task chambers (ENV-008; MED Associates, St. Albans, VT) were 

housed in a sound attenuated cabinet. The front of the chamber had access to a 

recessed dipper through a 5cm by 5cm window with infrared sensors to track nose poke 

time in seconds. The dipper has a 0.1ml cup attached, which is raised into the chamber 

to allow access to the cup. The cup contains a sucrose solution upon the completion of 

the required responses. On each side of the opening, 7.3cm above the metal grid floor 

are two retractable metal levers.  On the back wall of the apparatus is a third inactive 

lever that is located in line with the receptacle. At the beginning of testing, all three 

levers were presented. Animals underwent various ratio schedules to learn to respond 
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for continuous reinforcement during 82-minute sessions. After correct operant 

responses to the active lever, the sucrose solution is presented for 4 seconds, whereas 

responding on the inactive lever is recorded but not reinforced.   

2.7 Fixed and Progressive Ratio Task 

On Postnatal day 61, animals underwent a fixed-ratio (FR) 1 schedule for at least 

3 days. After three consecutive days of stable responding, defined by greater than 60 

rewards during the test period, the animals would be moved to an FR-3 schedule. 

Similarly, after 3 consecutive days of stable responding, now defined by 120 rewards on 

the FR-3 schedule, animals were moved to an FR-5 schedule. Upon 3 consecutive days of 

stable responding on the FR-5 schedule, animals underwent a progressive ratio test. The 

sequence of lever pressing requirements were 1, 2, 4, 6, 9, 12, 15, 20, 25, 32, 40, 50, 62, 

77, 95, 118, 145, 179, 603, 737, 901, 1102, 1347, 1646, and 2012, for a maximum of two 

hours in length for each test.  

2.8 Variable Progressive Ratio task 

On postnatal day 220, animals underwent the same progressive ratio schedule, 

with varying concentrations of sucrose reward (1%, 3%, 5%, 10%, or 30%). Each animal 

received a test for each concentration with a 5% sucrose FR-5 schedule on days in 

between tests. The total testing took 10 days with a 0% sucrose concentration PR 

schedule on the last day for extinction prevention. Starting concentrations were block 

randomized with concentrations shifted using a Latin square design 
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2.9 Distraction Task 

Upon completion of the progressive ratio task around postnatal day 230, animals 

performed an FR-5 schedule distraction task for 60 minutes. The first test is an FR-5 

schedule with a distracting tone (5dB above background fan noise of the chamber) 

during the middle 20 minutes of the 60-minute test period. The next day, animals were 

placed on an FR-5 schedule again, with no distraction. Lastly, on the third day of testing, 

animals were tested on the same FR-5 schedule with the distracting tone played from 

minutes 5-25, with no tone being played during the remaining of the testing period.  

2.10 Steatosis Analysis 

Livers of all animals were extracted and stored in -80°C freezer until processed. 

32 livers (n=4 per group) were randomly selected to undergo stereology procedures. 

Each liver was sectioned to 20 micron slices using a cryostat (Shandon Cryotome). Every 

18th slice was mounted, then, underwent a histological staining process using Oil Red O 

to stain for lipid deposits. The following was the histological staining procedure: 

• Slices were mounted and placed in a 10% PFA solution for 8-10 minutes 

• Washed with distilled water 

•  Placed in 100% propylene glycol for 3-5 minutes 

•  Placed in Oil Red O heated to 60 Degrees C for 8-10 minutes 

• Placed in an 85% propylene glycol and distilled water solution 

• Finally washed once more with distilled water. 

 To estimate percent volume of fat in each liver a Nikon Eclipse E800 (Nikon, Melville, 

NY) equip with a motorized LEP MAC 5000 XYZ stage (Ludl Electronic Products, NY) and 
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Stereoinvestigator (MicroBrightfield Williston, VT, Version 11.09) were used. The Area 

Fraction Fractionator probe allows randomly selected sampling sites to be determined 

and used to estimate volume with a sampling grid. For each slice, four sampling sites 

were determined with a 200x200 um square with markers 8um apart (total of 625 

markers) laid over each sampling site. From the stereological count, an accurate 

estimation of percent volume of fat was calculated by taking points counted divided by 

total points. 

2.11 Statistical analysis 

 All Statistical analyses were done using IBM SPSS v 24 (IBM Corp., Somers, NY). 

Graphs and curve fits were made using GraphPad Prism 5.02 (GraphPad Software, Inc. 

La Jolla, CA). On postnatal day 98, one MC4R +/- haploinsufficient animal on the 

inflammatory diet was found deceased. Missing data for the animal was replaced with 

means where appropriate. To detect if there was an effect of litter, we conducted a 

repeated-measures ANOVA on the bodyweight data using litter and genetic condition as 

variables. The data was used for its theoretically truer distribution of variance compared 

to other data sets. Following text from “Some statistical and experimental 

considerations in the use of the analysis-of-variance procedure” by Denenberg VH 

(1984) regarding nested designs, a more stringent alpha of .05 was used for our criteria. 

Litter was found non-significant at this alpha level F(8,56)=1.783, P=.100. Given that 

litter was found not significant, statistical analysis proceeded without regard of litter.   

 Bodyweight was analyzed using a mixed model ANOVA with genetic condition 

and diet as between-subjects factors and time (day) as a within-subject factor. Two 
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separate mixed model ANOVAs were run for basic movement and rearing during the 

locomotor activity tasks. Similarly, condition and diet were between-subject factors 

while time was a within-subject factor. Sucrose preference task was also analyzed using 

mixed models ANOVA. The same factors as the previous analyses were used, as well as 

the addition of the within-subject factor of sucrose concentration.  

 The progressive ratio task was analyzed using a simple between-subjects ANOVA 

using genetic condition and diet. The variable progressive ratio task was analyzed using 

mixed models ANOVA using the same factors as the progressive ratio in addition to 

sucrose concentration as a within-subjects factor. The distraction was analyzed using 

mixed models ANOVA as well. The within-subjects factor for the analysis was the 5-

minute bins that were recorded throughout the task.  

 Lastly, steatosis was analyzed using a between-subjects ANOVA. All behavioral 

measures were tested with the percentage of lipids in the liver using Pearson’s 

Correlation analysis. Measures that were found significantly correlated were then put 

into a linear or multiple regression model.
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Chapter 3. Results 

3.1 Both MC4R +/- haploinsufficiency and consumption of high-fat diet cause obesity. 

 Bodyweight data was used to assess the effect of MC4R +/- haploinsufficiency. 

Both genetic condition, F(1,26)=25.499, P≤.001, as well as diet, F(3,26)=3.837, P≤.05 

were found significant, however, there was no interaction between the two variables. 

Figure 1 depicts the differences between both the MC4R +/- haploinsufficient and 

dietary group. Most interestingly, there are notable differences in weight starting as 

early as day 120, confirming the idea that haploinsufficiency can be a model for adult-

onset obesity. 
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Figure 3.1: Bodyweight of both control and MC4R +/- Haploinsufficient animals. 
Haploinsufficient animals show a greater peak than the control counterparts do with an 
exaggerated difference between the high-fat diets and the control diets. Divergence of 
body weight can be seen around day 120 for both groups.
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3.2 MC4R +/- haploinsufficiency combined with poor diet produces deficits only found 

in rearing. 

 Locomotor activity was analyzed by creating an area under the curve for each 

genetic group and dietary condition across all trials, as depicted in figure 2.  Basic 

movement measures show no difference between genetic group, however, indicate a 

slight decline with an increase in dietary fat. For rearing, control and MC4R +/- 

haploinsufficient animals yield divergent outcomes. As dietary fat increases, control 

animals yield an increase in rearing. Conversely, the MC4R +/- haploinsufficient animals 

yield a decrease in rearing as dietary fat increases. Control and MC4R +/- 

haploinsufficient animal curve fits for the rearing are 0.92 and 0.98 respectively, with a 

significant difference between the two lines at F(2,2)=62.17, P≤.05. 
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Figure 3.2: Area under the curve measures for both basic movement and rearing were 
fit to curves. Basic movement yielded no difference between genetic group but 
indicated a slight decline as dietary fat increased. Rearing yielded divergent results for 
control and MC4R +/- haploinsufficient animals. 
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3.3 Motivational deficits due to MC4R +/- Haploinsufficiency are seen prior to obesity 

onset.  

The fixed ratio and progressive ratio operant tasks were used to analyze 

motivational differences. The tasks were assessed prior to the onset of obesity. None of 

the fixed ratio operant tasks revealed a significant effect of either genetic condition or 

diet.  

The progressive ratio operant task was assessed specifically at postnatal day 105. 

At this time point, the effect of the haploinsufficiency was of peculiar interest. Because 

of that, only the effect of the haploinsufficiency of the animals on the control diet was 

tested. The results found a significant effect F(1,16)= 11.645, P≤.05. The increase 

responding in the control MC4R +/- haploinsufficient group can be seen in figure 3. 

3.4 Post-obesity MC4R +/- haploinsufficiency motivational deficits are dependent on 

consumption of dietary fat.  

The variable progressive ratio operant task was assessed at postnatal day 220 to 

investigate motivational differences with varied reward concentrations post obesity 

onset. Diet was found significant, F(3,283)=4.269, P≤.05. An interaction of condition and 

diet was also found significant, F(3,283)=2.632, .P≤.05. Animals fed the control diet 

showed a similar linear increase in responding with an increase in sucrose 

concentration, regardless of their genetic condition. 
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Figure 3.3: Results from the progressive ratio task started around postnatal day 105. 
MC4R+/- animals fed the control diet show a clear increase in active lever pressing, 
indicating increased motivation for food compared to their control counterparts. The 
same task with animals fed the high saturated fat diet did not yield the same results. 
The effect of the high-fat diet lessens the difference between the control and MC4R+/- 
groups. A: Active lever presses. B: Current fixed ratio schedule. C: Breakpoint. D: 
Number of Reinforcers received  
 

MC4R+/- animals fed the high saturated fat diet show increased responding 

regardless of the sucrose concentration reward. The control counterparts only reach 

similar responding levels with the highly rewarding 30% sucrose concentration. The 

effect of diet and genetic condition on the variable ratio task can be seen in figure 4. 
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Figure 3.4: Results from the variable progressive ratio task starting at postnatal day 220, 
separated by dietary group. A: Animals fed the control diet do not show any difference 
in consumption regardless of genetic group or sucrose concentration. B: MC4R+/- 
haploinsufficient animals fed the high saturated fat diet show an increase in responding 
for a lower sucrose concentration than the control counterparts. However, at a high 
sucrose concentration responding rates for both groups indicate no difference. 
   

For the distraction task analysis, the third day of testing was used, with the 

distracting tone being played from minute 5 to 25. Only the intervals during the 

distraction period were used for the analysis. The distraction task did not reveal any 

significant differences between the groups.  

 The FR5 schedule used between the distraction tasks on postnatal day 230, 

labeled the no distraction task, was also analyzed using an ANOVA. The analysis 

revealed a significant effect of condition, F(7,88)=5.701, P≤0.05. Performing a Tukey’s 

post hoc analysis revealed a significant difference between the control animals fed the 

high saturated fat diet and their MC4R +/- haploinsufficiency counterparts. Figure 5 

depicts the differential responding in the MC4R +/- haploinsufficient group during the 

FR5 schedule that is not seen during the distraction task. Both the variable ratio task and 

the late age FR5 task show MC4R +/- haploinsufficiency motivational deficits are seen 

only in groups consuming high dietary fat. 
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3.5 Development of Steatosis is linearly dependent on dietary fat consumption with 

no relationship to behavior 

The steatosis analysis found a significant effect of diet F(1,3)=5.40, p≤.05. 

Following an ANOVA, a Bonferroni post-hoc test determined the difference was 

attributed to the control group and the 12% high fat group. Not surprisingly, it seems 

that the accumulation of fat in the liver has a direct linear relationship with the 

percentage of fat in the diet. 
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Figure 3.5: Distraction and no distraction FR5 tasks starting on postnatal day 230. A: 
During the no distraction task, animals fed the control diet did not differ in rates of 
responding. B: MC4R +/- KO animals fed the high saturated fat diet respond at higher 
rates than their control counterparts. C and D: The presence of a distracting tone alters 
the number of rewards earned by the MC4R +/- haploinsufficient animals fed the high 
saturated fat diet down to a non-significant level regardless of dietary fat being fed. 
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All behavioral measures were analyzed to investigate if steatosis can be 

predicted by behavior. To test the accuracy of steatosis measures, a regression analysis 

using bodyweight data to predict lipid deposits were used. The analysis resulted in an R2 

of .681. The robust result allows for more confident analysis of other behavioral 

measures.  
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Figure 3.6: A clear linear relationship is observed between the percentage of dietary fat 
and the percentage of lipids in the liver. The inflammation group drops down to almost 
control level indicating that this effect is not due to inflammation. No effect of MC4R +/- 
haploinsufficiency is indicated.  
 

Sucrose preference measures (consumption of water, 1%, 3%, 10%, and 30% 

sucrose concentrations) on day 90 resulted in an R2 of .426 using a linear regression 

model. Both the water and the 10% sucrose bottle measures were significant 

coefficients, with an overall significant ANOVA F(5,31)=3.855, P≤.05. No other measure 

had an R2 greater than .2.
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Chapter 4. Discussion 

It is clear that the MC4R haploinsufficient rat shows a resemblance in phenotypic 

expression to its human counterpart. Motivational changes in the MC4R+/- 

haploinsufficient rat, however, seem to be intricately entangled with two other major 

factors; age and diet. The results from the progressive ratio task, the variable 

progressive ratio task, and the distraction task were all performed at different ages that 

help create a timeline of the development of obesity and motivational changes. During 

the initial stages of obesity around postnatal day 100, MC4R +/- haploinsufficient 

animals fed the control diet showed increased motivation towards food-related 

rewards. After control and MC4R +/- haploinsufficient animals exhibited differential 

weights on postnatal day 220, animals fed the high saturated fat diet began to express 

divergent motivational outcomes during the tasks. The time course could indicate a shift 

in motivational changes from the development of obesity to the maintenance of 

obesity. Pre-obesity, MC4R +/- animals fed the control diet yielded an increase in 

motion towards reward, while the high saturated fat diet mitigated the effect of the 

MC4R +/- haploinsufficiency. Conversely, during later stages of obesity, the animals fed 

the high saturated fat diet showed increased motivation for reward, regardless of the 

value of the reward (shown by the variable progressive ratio task), to help maintain 

their already rewarding dietary consumption habits.   
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Analysis of weight shows a significant difference in late adolescence or early 

adulthood period between the control and MC4R haploinsufficient groups. The weight 

differences are seen regardless of the diet being fed, indicating that the MC4Rs are the 

underlying cause of the weight differences that could be exacerbated by the effect of 

high-fat diets. Observed differences in weight are shown around the adolescent 

developmental period in humans as well (Loos et al., 2008, Lubrano and Berthelier et al., 

2003). It is no surprise that we see similar results in animals as we do humans. The 

underlying mechanisms of weight gain are the current focus of many researchers.  

The results from the behavioral tasks indicate an exceptional role of motivation 

in the MC4R+/- haploinsufficient rat. Age and diet seem to influence motivational 

differences in the animals as well. During the early stages of the development of 

obesity, MC4R +/- animals that are not receiving already rewarding high-fat diet display 

an increase in motivation towards food related rewards. In the adult animals that have 

fully developed obesity, it seems that the maintenance of their obesity becomes the 

source of the motivational differences, causing the animals already fed the high 

saturated fat diet to display increased responding to food related rewards. The signs of 

motivational differences during the early stages of obesity could indicate a 

dysregulation in reward pathways in the brain even prior to the development of obesity. 

While animals on different diets displayed motivational deficits at different time points 

during the development of obesity, an underlying dysregulation of the reward pathway 

could be the source. The idea of a reward circuity malfunction is not farfetched. There 
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are known connections between the MC4R and dopamine circuits that are related to 

the motivation in receiving and consuming palatable food.    

Reward related areas of the brain are highly connected with the melanocortin 

system. POMC and AGRP neurons from the arcuate nucleus of the hypothalamus have 

projections to areas such as the ventral tegmental area, the nucleus accumbens, as well 

as the lateral hypothalamus (King and Hentges., et al 2011: Bagnol et al., 1999: Cui., et al 

2012). Similarities in brain areas cause cross interaction between the two systems that 

affect feeding behaviors, motivation, and the relationship between the two. He, Zhi-

Gang et al compiled a large body of literature to show the abundant collaboration 

between the two systems (He, Zhi-Gang et al., 2015). D1 and D2 receptors have also 

been found to be co-localized with MC4R in the striatum and Nucleus Accumbens.  Cui 

et al found that procedural memory activity shown from the D1 receptors are 

interconnected through the MC4Rs, specifically in the striatum (Cui et al.,2012). Yoon 

and Baik 2015 found that both MC4R and D2 receptors work cohesively inside the bed 

nucleus of the stria terminalis. Inside the ventral tegmental area, it has been shown that 

injections of melanocortins have decreased consumption of palatable rewarding sucrose 

solutions during a two bottle sucrose preference task (Yen, Haw-Han et al., 2013). Along 

with the connection to dopamine, previous studies have linked motivational differences 

between control and MC4R haploinsufficient groups (Vaughan et al., 2006: Cui., et al 

2013). The studies used both a progressive ratio and a fixed ratio respectively with 

motivational differences uncovered; however, age and dietary differences were not 

observed. A key difference between the previously cited studies and ours was the 
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accessibility to food. Both studies use a form of food restriction while our animals had 

ad libitum access to their food. Availability to food, specifically with differing levels of 

saturated fat, further emphasizes the complex connection between the MC4R and 

dopamine reward systems. The complex relationship generalizes more uniquely to 

human individuals with MC4R deficits that have an abundant availability of easily 

accessible food. 

Stereology revealed intriguing results in reference to the accumulation of lipid 

deposits in the liver. The control group and the high saturated fat group showed 

statistical significance when analyzed. More accurately, there is a linear relationship 

between the percentage of dietary fat with the percentage of lipid deposits in the liver. 

It appears that even when fed a control diet there is still fat that can be found in the 

liver of both the control and MC4R haploinsufficient animals. It is normal to have fat in 

the liver. The results conclude that both groups of animals have around 30% volume of 

fat in their livers. Control animals seem to have an above average volume of lipid 

deposits; however, even the animals on the control diet had access to food ab libitum. 

The constant access to food might have increased their base level of fat in the liver 

especially compared to humans when food is not necessarily available at all times (i.e. 

while working, school, or simply following a normal three-meal diet). The 6% saturated 

fat diet shows a slight increase of fat in the liver, raising it to about 40-50%. The 12% 

saturated fat group jumps the volume of lipids to around 55-60% in the liver. Looking at 

these results it appears that every 6% additional saturated fat increased the percentage 

of lipids in the liver by around 10-15%. These results coincide with previous findings of 
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the effect of dietary fat creating a similar representation of steatosis in our animals as 

they did with theirs. (Ahmed et al 2009). 

To further develop the relationship between the high fat dietary consequences and 

MC4R haploinsufficiency, we investigated if any of the behavioral measures were 

predictive of the amount of fat accumulated in the liver. After running multiple 

regression models, it is unclear if there is a relationship. Building models accounting for 

pre and/or post obesity, no model reached statistical significance. While modeling a 

behavioral predictor for steatosis could have great clinical relevance, it is not surprising 

that no effect was found.  

We hypothesized that the MC4R +/- haploinsufficient animals would display 

increased obesity early in age due to an increased motivation to food related rewards 

indicated by behavioral differences. We also hypothesized that the percentage of lipid 

deposits in the liver would be indicative of the behavioral tasks. Steatosis does act in a 

dose-dependent relationship with dietary fat, however, using Pearson’s correlation and 

multiple regression analyses; it does not seem that any behavioral measures are 

predictive of the development of steatosis. Our results conclude an elaborate 

connection between motivation, the MC4R circuit, and dietary fat. Motivational deficits 

seem to be influenced by the stage of obesity as well as dietary fat being consumed. The 

results emphasize the importance of a healthy low saturated fat diet. The knowledge of 

motivational differences caused by MC4R deficits reveals a potential new clinical target 

for the treatment of obesity in the underlying mechanisms of the dopamine reward 

circuitry connected to MC4R receptors.
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